actfts - Autocorrelation Tools Featured for Time Series
The 'actfts' package provides tools for performing
autocorrelation analysis of time series data. It includes
functions to compute and visualize the autocorrelation function
(ACF) and the partial autocorrelation function (PACF).
Additionally, it performs the Dickey-Fuller, KPSS, and
Phillips-Perron unit root tests to assess the stationarity of
time series. Theoretical foundations are based on Box and Cox
(1964) <doi:10.1111/j.2517-6161.1964.tb00553.x>, Box and
Jenkins (1976) <isbn:978-0-8162-1234-2>, and Box and Pierce
(1970) <doi:10.1080/01621459.1970.10481180>. Statistical
methods are also drawn from Kolmogorov (1933)
<doi:10.1007/BF00993594>, Kwiatkowski et al. (1992)
<doi:10.1016/0304-4076(92)90104-Y>, and Ljung and Box (1978)
<doi:10.1093/biomet/65.2.297>. The package integrates functions
from 'forecast' (Hyndman & Khandakar, 2008)
<https://CRAN.R-project.org/package=forecast>, 'tseries'
(Trapletti & Hornik, 2020)
<https://CRAN.R-project.org/package=tseries>, 'xts' (Ryan &
Ulrich, 2020) <https://CRAN.R-project.org/package=xts>, and
'stats' (R Core Team, 2023)
<https://stat.ethz.ch/R-manual/R-devel/library/stats/html/00Index.html>.
Additionally, it provides visualization tools via 'plotly'
(Sievert, 2020) <https://CRAN.R-project.org/package=plotly> and
'reactable' (Glaz, 2023)
<https://CRAN.R-project.org/package=reactable>. The package
also incorporates macroeconomic datasets from the U.S. Bureau
of Economic Analysis: Disposable Personal Income (DPI)
<https://fred.stlouisfed.org/series/DPI>, Gross Domestic
Product (GDP) <https://fred.stlouisfed.org/series/GDP>, and
Personal Consumption Expenditures (PCEC)
<https://fred.stlouisfed.org/series/PCEC>.